

DISCOVERING THE CURRENT LANDSCAPE OF IMMUNOTHERAPIES

KEY DATA & DEFINITION

Immunotherapies suppress or stimulate the immune system and enable the body to fight cancer, infections and other diseases.

•

Global cancer immunotherapy market value

Estimated to surpass \$80 bn by 2020

in clinical development

LOOKING AT THE BIG PICTURE: **A TIMELINE OF IMMUNOTHERAPIES**

MONOCLONAL ANTIBODIES (mAbs)

- · Types: Naked, conjugated or bispecific mAbs
- · MoA: Activate immune system, target specific antigens, destroying cancer cells

- Reproducible & scalable
- · Hybridoma cells as unlimited production source
- Highly specific

LIMITATIONS

- Expensive production
- Long production timeline
- Risk of immune reactions & adverse events

APPLICATION OF mAbs

COMMERCIALIZED:

IN CLINICAL DEVELOPMENT:

- Various cancers
- Chronic inflammation
- Autoimmune & infectious diseases

ADVANTAGES

Stimulates host immune

· Low costs, short timeline

system

Limited toxicity

- Various cancers
 - Neurodegenerative diseases

LIMITATIONS

Infectious diseases

CANCER VACCINES

980s

KEY ASPECTS

- Biological response modifiers
- · Prophylactic vaccines or therapeutic vaccines
- MoA: Activate cytotoxic T-cells by introducing 1+ antigen(s) into the body, triggering an immune response

APPLICATION OF CANCER VACCINES

COMMERCIALIZED:

- Preventive vaccines: human papillomavirus-induced cancer & hepatitis B virus-induced liver cancer
- Therapeutic cancer vaccines: prostate cancer & metastatic melanoma

IN CLINICAL DEVELOPMENT:

Possible toxicity

response

Poor efficacy & limited

· Therapeutic vaccines short-

lived immune stimulation

- 96+
- Personalized therapeutic vaccines using neoantigens
- Oncolytic virus-mediated anti-cancer vaccines

THERAPEUTIC TUMOR INFILTRATING LYMPHOCYTES

• Up to 50% tumor reduction of metastatic melanoma

- Resource intensive & costly
- Technically difficult
- **APPLICATION OF TILS**

· MoA: tumor cell lysis

IN CLINICAL DEVELOPMENT:

Various cancers

1980s

CHECKPOINT INHIBITORS

- Regulate cell cycle, initiating or deactivating immune response
- · Can also be mAbs

- ADVANTAGES
- Positive treatment outcomes in chemotherapy-combination
- Natural T-cell function upheld

- Toxicity due to unspecificity
- 40-50% effective
- Increasing treatment costs

APPLICATION OF CHECKPOINT INHIBITORS

COMMERCIALIZED: Various cancers

- IN CLINICAL DEVELOPMENT:
- 45+

Personalized treatment

clinical trials

Promising future

Remission rates up to 94% in

Various cancers

ADVANTAGES

EY ASPECTS

· MoA: CARs allow T-cells to recognize antigens on tumor cells

APPLICATION OF CAR-T

COMMERCIALIZED:

Children with acute lymphoblastic leukemia

Adults with advanced lymphomas

IN CLINICAL DEVELOPMENT:

- ·21+
- Various cancers

CHECK OUT THIS FUTURE IMMUNOTHERAPY:

LENTIVIRAL VECTOR VACCINES

KEY CHARACTERISTICS

Code for antigens of viral, bacterial, parasitic or cancerous origin

Next generation cancer vaccines

MoA: Endogenous pathway; antigenic protein neo-synthesized within the dendritic cell (DC), presented to T-cells for the entirety of DC life

ADVANTAGES

- Intense, diversified & long-term T-cell response after only 1 injection
- · Elicit a physiological & naturally controlled immune response
- Cost effective

LIMITATIONS

- New technology evolving regulatory environment
- Upscale production capacities are still

Lentiviral Vector Vaccine

Lentiviral Vector with Antigen Coding Cassette

Dendritic Cell

Proteic Antigen Production

Transmembrane Protein

- · Lengthy & costly development
- Adverse events: neurotoxicity & cytokine storms
- Effective in limited amount of cancers, need for optimization

limited

Natural Immune Response

"Based on the T-cell responses they generate, lentiviral vectors represent our best chance to tackle morbid diseases such as HIV, malaria and multi-drug-resistant tuberculosis. They also present an opportunity to largely increase response to immune-oncology treatments."

Pierre Charneau, HIV specialist & Head of the Theravectys & Pasteur Institute Joint-Lab

SOURCES

Labiotech.eu, TheraVectys, American Cancer Society, Cancer Research UK, National Cancer Institute

Want to work with us? Reach out to contact@labiotech.eu

Text: Larissa Warneck Design and images: Elena Resko

