Hundreds of genetic discoveries from FinnGen study 

Helsinki Finland

New results from the FinnGen research consortium include previously unknown genetic risk factors for many debilitating diseases. These findings have potential to facilitate the development of new therapies.

Since initiation in 2017, the FinnGen study has developed into one of the world’s leading biobank-based genomic research projects. Currently, FinnGen is completing the construction of a resource that integrates genomic information from 500,000 Finns with more than half a century of national health registry data.

The FinnGen flagship study, just published in Nature, is a demonstration of the opportunities unique to Finnish health data, population structure, legislative frameworks and biobanking organization that in combination exist nowhere else.

The FinnGen study, launched in autumn 2017, is an academic-industrial collaboration between the Finnish biobanks and their respective universities and university hospitals, the Finnish Institute of Health and Welfare (THL), the Finnish Red Cross Blood Service, the Finnish Biobank Cooperative – FINBB and 13 international pharmaceutical companies. The study is funded by Business Finland and industrial partners AbbVie, AstraZeneca, Biogen, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, a member of the Roche Group, GlaxoSmithKline (GSK), Janssen, Maze Therapeutics, MSD (the tradename of Merck Sharp & Dohme LLC), Novartis, Pfizer, and Sanofi.

The University of Helsinki is the academic organization responsible for the study. As of November 2022, FinnGen has generated genotype and phenotype data from 429,221 biobank samples and is on track to complete the resource construction phase in 2023. The results of the study are publicly available. 

FinnGen study results

The FinnGen team published results based on 224,737 Finnish biobank participants. After performing genetic analyses for more than 1,900 diseases, the researchers identified almost 2,500 genomic regions linked with at least one of these diseases.

“Even with less than half of the recruited 500,000 participants analyzed at this stage, this snapshot of results describes a wealth of important genetic discoveries emerging from FinnGen, including novel risk and protective variants for both common and rare diseases,” says FinnGen scientific director, Professor Aarno Palotie from the Institute for Molecular Medicine Finland FIMM, University of Helsinki.

Finland’s health registers and biobanks provide unique opportunities

In Finland, health information such as medical diagnoses, procedures and drug prescriptions are captured for many decades in national electronic health registers for the entire population. This creates unique research opportunities.

In addition to verifying the validity of register data, the researchers showed that identification of novel risk variants in FinnGen is possible with a much smaller number of patients compared to the largest published disease-specific genetic studies.

“The Finnish health registers containing health and medication data throughout an individual’s lifetime, allowed us to rapidly and accurately identify disease cases. This accurate phenotyping, coupled with Finnish population history is a very powerful combination for novel genetic discoveries in a wide variety of diseases,” said Mitja Kurki, the first author of the study from the Broad Institute of MIT and Harvard and the University of Helsinki.

New entry points into disease biology

The modern Finnish population, despite being broadly similar to Europeans genetically, has an unusual and large set of genetic variants not often found elsewhere in the world. Several hundred of the 2,500 disease linked variants described in the study are in this category.

Among these variants, the researchers noted 29 that are located in genes not previously linked to any disease. One example is a variant in a gene called TNRC18, which predisposes to inflammatory bowel disease and other inflammatory conditions. Other examples include variants increasing the risk of hypothyroidism, hearing loss or endometriosis, and variants that offer protection from arthrosis, glaucoma or heart disease.

“These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through variants that are rather rare, but have a strong biological impact,” said Mark Daly, director of the Institute for Molecular Medicine Finland FIMM at the University of Helsinki, the lead organization behind the study.

Additional FinnGen papers published this week provide examples of findings that increase understanding of genetic predictors of medication use patterns as well as mechanisms leading to otosclerosis and respiratory infections, among other diseases. Another FinnGen paper published in the same issue of Nature highlights that the classical inheritance models traditionally considered in genomic research and clinical diagnostics do not fully capture the range of genetic effects observed in populations.

“With all this new information, the genetic composition of the Finnish population is now unquestionably among the best known in the world. However, the impact of our study is much broader and can benefit patients everywhere,” Palotie concluded.

Partnering 2030: The Biotech Perspective 2023

Download Inpart’s latest report revealing the priorities of out-licensers worldwide.

Newsletter Signup - Under Article / In Page

"*" indicates required fields

Subscribe to our newsletter to get the latest biotech news!

This field is for validation purposes and should be left unchanged.

Suggested Articles

Show More