Nanoparticle can kill cancer cells and aid muscle relaxation

July 4, 2022 - 3 minutes
Image: Shutterstock

A nanoparticle that is both a nanoheater and a nanothermometer at the same time has been developed by researchers at a Japanese university.

The university said this is a significant development that not only aids muscle relaxation, but it can also kill cancer cells.

Satoshi Arai and colleagues at Kanazawa University have successfully showed that the insertion of a single, controllable heat spot in tissue can be effective in modifying cellular function.

Inserting the nanoparticle in living cells results in a heat spot that, by switching it on and off, enables the controlled modulation of local cellular activities.

Temperature sensitive

Being able to heat nano-sized regions in biological tissues is key to several biomedical applications.  A lot of biological processes are temperature-sensitive, and the ability to locally modify temperature provides a way to manipulate cellular activity. 

The most notable purpose is the destruction of cancer cells by heating them.  Beside the need for an in-tissue local heating mechanism, it also important to be able to instantaneously measure the generated temperature. 

Content continues below

Related Content

The nanoparticle, called “nanoHT” by the scientists — an abbreviation of nanoheater-thermometer — is essentially a polymer matrix embedding a dye molecule (called EuDT) used for sensing temperature, and another dye molecule (called V-Nc) for releasing heat. The latter happens through the conversion of light into thermal energy by shining a near-infrared laser – with a wavelength of 808 nanometers – onto V-Nc results in fast heating, with a stronger increase in temperature for higher laser power.

Temperature sensing is based on the thermal fluorescence effect of EuDT.  When irradiated with light of one wavelength, the molecule emits light at another wavelength — fluorescence.  The higher the temperature, the less intense the fluorescence becomes. This inverse relationship can be used to measure temperature.  Arai and colleagues tested the performance of nanoHT as a thermometer, and established that it can determine temperatures with a resolution of 0.8°C and less.

The researchers then performed experiments with a type of human cells called HeLa cells. They looked at the effect of heating through nanoHT, and found that at a temperature increment of about 11.4°C, the heated HeLa cells died after only a few seconds. This finding suggests that nanoHT could be used to induce cell death in cancer cells.

Muscle behavior

Arai and colleagues also studied how nanoHT can be used to affect the behavior of muscles. They introduced the nanoparticle into myotube, a type of fiber present in muscle tissue.  Upon heating the myotube by approximately 10.5°C, the muscle tissue contracted. The procedure worked reversibly; letting the myotube cool again led to muscle relaxation.

The work of Arai and colleagues shows that local heating at a subcellular scale by means of nanoHT enables the controlled manipulation of a single cell’s activity. 

Regarding applications, the scientists believe that “the targeted application of nanoHT has a diverse and versatile range of capabilities to regulate cellular activities that would facilitate the development of thermodynamic cell engineering.”

Content continues below

Related Content

You might also be interested in the following: