Artificial Intelligence in Oncology: Fantasy or Reality?

Artificial intelligence promises to use the power of data to solve some of the biggest problems of our time. But can it help us treat a disease as complex as cancer?

Artificial intelligence and machine learning are (not that) new technologies that have been recently boosted thanks to hardware improvements. Through algorithms, they can learn, predict and advise based on vast amounts of data.

The potential of AI to disrupt all sorts of markets has led to some big investments in the technology. Last year, the European Commission announced a €20B AI strategy for Europe. France also launched its own €1.5B program, which was followed by the opening of new R&D facilities by companies like Fujitsu, Facebook or Google DeepMind.

ADVERTISEMENT

One of the areas where AI is expected to have a major impact is healthcare, where it can be used to interpret the data from the massive patient databases gathered over the years by companies, healthcare providers and payers. In particular, the treatment of cancer could greatly benefit from the arrival of AI technology.

Oncologists have been trying for decades to find out which cancer patients can benefit the most from a specific treatment. However, the success of this precision medicine approach has so far been limited. One of the reasons is that medical doctors are inundated with hard to understand data from the patients they are treating. This is where AI comes into play.

AI as a diagnostic tool

Some companies are already selling ‘AI as a service’ solutions ranging from early stage diagnosis to prognosis. For example, in the context of breast cancer, only 5% of women who are called for further testing after a first screening do have breast cancer. This increases the costs for clinics and is a stressful experience for patients. Therapixel, a startup specialized in medical imaging, is using artificial intelligence to analyze mammograms based on the results of thousands of previous examinations.

Artificial intelligence has also shown that it can significantly reduce the error rate of diagnosis. In this field, Google is developing an augmented reality microscope that uses AI software to assist pathologists in the detection of cancer, which could cut down on time-consuming activities such as manual cell counting. IBM has ambitious goals in this area with its AI platform Watson for Genomics, although so far its results don’t seem as good as promised.

In Switzerland, Sophia Genetics is using artificial intelligence to pinpoint gene mutations behind cancer to assist doctors in the prescription of the best treatment. Their solution costs on average $50-$200 per genetic evaluation and according to the company it is currently used by more than 970 hospitals in over 80 countries.

Another deep tech innovation for early detection of cancer from Freenome has attracted well-known VCs, including Andreessen Horowitz and Google Verily. The US-based company recently announced a strategic collaboration with the Institut Curie to evaluate its AI genomics platform as a tool to predict patients’ responses to immuno-oncology therapies by observing changes in biomarkers circulating in the bloodstream.

AI for precision medicine

Using AI in precision medicine has big potential, but a major bottleneck is that we are still lacking a range of drugs wide enough to treat all these patients effectively. According to Sam Natapoff, analyst at Bloomberg, drug development is “made for AI applications.” This opportunity has attracted large AI developers, big pharma and a huge number of startups. It is estimated that approximately 100 startups are using AI in the field of drug discovery.

ADVERTISEMENT

In late 2016, Pfizer announced a drug discovery collaboration with IBM to “analyze massive volumes of disparate data sources, including licensed and publicly available data as well as Pfizer’s proprietary data.”

artificial intelligence precision medicine sophia genetics

For their part, Sanofi and GSK have both partnered with Exscientia, a spin out of the University of Dundee, Scotland, to identify synergistic combinations of cancer targets, to then develop drugs against those targets.

Roche, out of many other deals — including the acquisition of Flatiron Health for $1.9B and a partnership with GNS Healthcare — is supporting an open research initiative called EPIDEMIUM to bring together multiple players and apply AI to the research of new cancer therapies.

However, this field is still at a very early stage. So far, only the British company BenevolentAI, in partnership with Janssen, has shown concrete results, which have led to a drug candidate now moving to a phase II trial.

Reducing trial costs

Artificial intelligence has the potential to draw insights from tremendous volumes of real-world data and apply it to the design of clinical trials, which could reduce significantly the cost. Especially given that patient recruitment alone represents about 30% of the total clinical trial time.

ADVERTISEMENT

Last year, the Horizon 2020 program granted €16M to a huge European consortium — including big names like Institut Curie, Charité, Bayer, Philips and IBM — aiming to use AI technology to improve clinical outcomes in oncology at lower cost.

However, precedents have not been that promising. In 2013, the M.D. Anderson Cancer Center launched a program to test whether IBM Watson could speed up the process of matching patients with clinical trials. In the end, the $62M program didn’t prove to be efficient and cost-effective.

Challenges to overcome

The application of AI to oncology still needs to overcome some major hurdles. First of all, data scientists have to deal with unstructured electronic health records and data coming from multiple sources that has been collected and structured for different purposes. Most routine databases do not have sufficient quality to be used by AI algorithms to achieve the quality standard required for clinical trials.

From a regulatory perspective, the authorities have been proactive to facilitate the approval process. Former FDA Commissioner Scott Gottlieb declared last year that the FDA is actively working on a regulatory framework for AI technologies with health applications.

The very first cloud-based deep learning algorithm has been approved recently by the FDA under the category of medical devices, meaning it can be used in clinical routine. In the EU, there is a legislative proposal for new medical device regulations, not yet adopted, that addresses software for medical devices with a medical purpose of “prediction and prognosis.” An additional challenge in Europe is that the recent General Data Protection Regulation (GDPR) enforcement is negatively impacting the development of AI algorithms.  

There is undoubtedly fantasy around AI. Entrepreneurs are tempted to surf on the hype and the limited understanding of the community about what AI is and what it can do. The AI business value chain should be discussed to clarify the involvement of different stakeholders in all steps, from raw algorithms to results. That way, we will be able to finally switch from an overhyped technology with only a few proof-of-concept examples to an actual breakthrough in healthcare.


This article was originally published in April 2017 and has since been updated. Images via Shutterstock

Let's Continue The Conversation

Feel free to send us comments about this article to [email protected] and/or comment on that article on social media.

We use cookies to give you the best experience and for advertising purposes. By accepting, you support our independent media and its' freely accessible content.