AAHI bags $9.9M to develop nasal spray influenza RNA vaccine 


The Access to Advanced Health Institute (AAHI) has been awarded a project agreement worth up to $9.9 million through the Medical CBRN Defense Consortium (MCDC) Other Transaction Authority (OTA) to develop a prototype intranasal bivalent influenza RNA vaccine candidate.

The candidate will be based on AAHI’s self-amplifying RNA (saRNA) platform, which targets both pandemic A(H5N1) and A(H7N9) influenza virus pathogens.

The prototype project was awarded on behalf of the U.S. Department of Defense’s (DoD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) and the Biomedical Advanced Research and Development Authority (BARDA), part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services.

AAHI’s RNA platform, which delivers saRNA bound to the exterior of a nanostructured lipid carrier (NLC), entered first-in-human clinical trials in May 2022 with phase 1/2 clinical trials of the “AAHI-SC2” COVID-19 vaccine candidate.

Respiratory viruses such as SARS-CoV-2 and influenza virus remain unique biological threats. Global health and domestic military readiness require effective vaccines that can be easily administered and are rapidly adaptable to emerging threats. Current mRNA vaccines against COVID-19 reduce severe illness and hospitalization, but they require boosters to maintain protection, are not always effective against viral variants, and do not effectively curtail viral transmission. 

Although influenza vaccines have been available for almost a century, three influenza pandemics have occurred since the 1918 H1N1 pandemic, of which the most recent 2009 pandemic claimed hundreds of thousands of lives worldwide in the first year.

Eliminating needles

This work with JPEO-CBRND and BARDA will build on AAHI’s initial research and development, partially BARDA-funded, of an intranasal pandemic influenza RNA vaccine candidate in liquid and dry powder presentations. Intranasal vaccine administration could reduce or eliminate the use of needles by the ease of self-administration, potentially increasing vaccine uptake, and by driving key mucosal immune responses not typically induced by needle-administered vaccines.

Preclinical studies supporting the feasibility of AAHI’s intranasal RNA vaccine showed that AAHI’s saRNA vaccine construct against COVID-19 induced robust lung-resident T-cell immunity, coupled with strong systemic immunity. The findings demonstrated that AAHI’s intranasal COVID-19 RNA vaccine provides an immune stimulatory combination that is key for robust protection and may also help significantly limit viral transmission.

“Stimulating robust systemic and mucosal immunity with rapid-response RNA vaccine technology would be a game-changer for pandemic preparedness,” said Emily Voigt, principal scientist, AAHI RNA platform lead, and principal investigator for the award. 

“Our preliminary data show great promise in preclinical models but have a long way to go to demonstrate effectiveness in humans. This prototype project is designed to bridge that gap quickly and effectively.”

AAHI’s saRNA platform supports development of vaccines that not only promise to provide robust, broad, and durable protection against infectious diseases but also can be distributed rapidly worldwide, without requiring deep cold chain or other complex infrastructure. The demonstrated stability of AAHI’s vaccine technologies for months at room temperature, combined with simplified manufacturing requirements, supports self-reliance and sustainability in low-resource areas by simplifying the supply chain logistics required to produce, transport, store, and distribute vaccines.

The 40-month project may culminate in a prototype bivalent vaccine candidate that is effective against both the H5N1 and H7N9 strains of influenza. AAHI plans to expand on this work to develop more efficient and equitably accessible RNA vaccines that can reach people in all areas of the world, regardless of geography or socio-economic status.

Newsletter Signup - Under Article / In Page

"*" indicates required fields

Subscribe to our newsletter to get the latest biotech news!

This field is for validation purposes and should be left unchanged.

Suggested Articles

Show More