Life Biosciences gene therapy data shows visual function restored in primates

eyes NAION ageing aging

Life Biosciences (Life Bio) has announced preclinical data in nonhuman primates (NHP) for its novel gene therapy candidate, which uses a partial epigenetic reprogramming approach to restore visual function.

The approach has been shown to reverse aging, improve vision, and extend lifespan in mice, but whether epigenetic reprogramming would work in primates was not known. Researchers at Life Biosciences and academic researchers reported that Life Biosciences’ therapy significantly restored visual function in an NHP model of non-arteritic anterior ischemic optic neuropathy (NAION), a disorder similar to a stroke of the eye that is characterized by painless yet sudden loss of vision. 

The data, presented at the Association for Research in Vision and Ophthalmology (ARVO) 2023 conference in New Orleans, U.S., represents an important step forward toward enabling human clinical trials to potentially treat a variety of ophthalmic disorders and other diseases of aging.

Life Biosciences’ lead platform reprograms the epigenome of older animals to resemble that of younger animals via expression of three Yamanaka factors, Oct4, Sox2, and Klf4, collectively known as OSK. The approach partially reprograms cells to resemble a more youthful state while retaining their original cellular identity. Previous gene therapy data from Life Biosciences and academic researchers, which were also presented at ARVO 2023, have shown that treatment with OSK reverses retinal aging and restores vision in old mice in a mouse model of glaucoma.

Now, with the data presented at ARVO, the company said it has demonstrated restoration of visual function and increased nerve axon survival in an NHP model that mimics human NAION deficits in retinal ganglion cells. 

Key data highlights 

Laser-induced damage to the eyes of NHPs showed a reduction in the key ophthalmic measures that are typically seen in humans with NAION, including pattern electroretinogram (pERG) signals, optical coherence tomography (OCT), retinal nerve fiber layer (RNFL) thickness, and number of surviving optic nerve axons.

NHPs received an intravitreal (in-eye) injection of doxycycline-inducible OSK viruses or vehicle one day after laser damage. Doxycycline was administered systemically until the end of the study.

When eyes were treated with OSK after laser damage, OSK significantly restored pERG responses compared to controls, consistent with restoration of vision. OSK also significantly improved the number of healthy axon bundles compared to controls.

“NAION is the most common cause of acute optic neuropathy in people over 50, but currently has no effective treatment. The data we are presenting here show, for the very first time, that treatment with OSK can lead to significant recovery in affected visual function in an NHP model of NAION, the gold standard translational model. That potential unlocks new opportunities for cellular rejuvenation, not just in NAION but in other ophthalmic diseases that occur as a result of retinal ganglion cell dysfunction as we age,” said Bruce Ksander, associate professor of ophthalmology and co-director of the Ocular Oncology Center of Excellence at Harvard Medical School, and lead presenter of the study at the ARVO conference.

Sharon Rosenzweig-Lipson, chief scientific officer of Life Biosciences, said: “We are delighted to present this truly groundbreaking data, which further validate Life Bio’s innovative approach to cellular rejuvenation. This approach has implications far beyond NAION and even the vision field, and we are pleased to share data that support the continued development of our scientific platform to address diseases of aging and restore human health.”

Life Biosciences tackling range of aging diseases

Life Biosciences is advancing its cellular rejuvenation capabilities across a range of aging-related diseases, including additional ophthalmic and neurodegenerative indications. The data being presented at ARVO builds on previous findings from David Sinclair’s and Ksander’s labs at Harvard Medical School showing that OSK can reverse aging in mice.

Sinclair, co-founder of Life Biosciences, and professor in the Department of Genetics and co-director of the Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, and coauthor on the study, said: “Demonstrating rejuvenation in nonhuman primates is a major step forward in advancing cellular rejuvenation as a way of treating both common and rare diseases in the eye and potentially other tissues. What we’ve learned in NHPs has important ramifications for research on reversing aging and is likely to be highly translational to humans. This data moves us an important step closer to the first clinical trials of how cellular rejuvenation technology could treat aging-related diseases.”

Explore other topics: Anti-agingEye DiseaseGene therapy

Newsletter Signup - Under Article / In Page

"*" indicates required fields

Subscribe to our newsletter to get the latest biotech news!

This field is for validation purposes and should be left unchanged.

Suggested Articles

Show More